The Fractal Dimension of Invariant Subsets for Piecewise Monotonic Maps on the Interval

نویسنده

  • F. HOFBAUER
چکیده

We consider completely invariant subsets A of weakly expanding piecewise monotonic transformations T on [0, 1]. It is shown that the upper box dimension of A is bounded by the minimum tA of all parameters t for which a t-conformal measure with support A exists. In particular, this implies equality of box dimension and Hausdorff dimension of A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of the Hausdorff Dimension for Invariant Subsets of Interval Maps

Let T : [0, 1] → [0, 1] be an expanding piecewise monotonic map, and consider the set R of all points, whose orbits omit a certain finite union of open intervals. It is shown that the Hausdorff dimension HD (R) depends continuously on small perturbations of the endpoints of these open intervals. A similar result for the topological pressure is also obtained. Furthermore it is shown that for eve...

متن کامل

Invariant Measures for the n-Dimensional Border Collision Normal Form

The border collision normal form is a continuous piecewise affine map of R n with applications in piecewise smooth bifurcation theory. We show that these maps have absolutely continuous invariant measures for an open set of parameter space and hence that the attractors have Haus-dorff (fractal) dimension n. If n = 2 the attractors have topological dimension two, i.e. they contain open sets, and...

متن کامل

Dimension Groups for Interval Maps Ii: the Transitive Case

Any continuous, transitive, piecewise monotonic map is determined up to a binary choice by its dimension module with the associated finite sequence of generators. The dimension module by itself determines the topological entropy of any transitive piecewise monotonic map, and determines any transitive unimodal map up to conjugacy. For a transitive piecewise monotonic map which is not essentially...

متن کامل

Dimension Groups for Interval Maps Ii: the Transitive Case

Any continuous, transitive, piecewise monotonic map is determined up to a binary choice by its dimension module with the associated finite sequence of generators. The dimension module by itself determines the topological entropy of any transitive piecewise monotonic map, and determines any transitive unimodal map up to conjugacy. For a transitive piecewise monotonic map which is not essentially...

متن کامل

Dimension groups for interval maps

With each piecewise monotonic map τ of the unit interval, a dimension triple is associated. The dimension triple, viewed as a Z[t, t−1] module, is finitely generated, and generators are identified. Dimension groups are computed for Markov maps, unimodal maps, multimodal maps, and interval exchange maps. It is shown that the dimension group defined here is isomorphic to K0(A), where A is a C*-al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999